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Abstract

Sample means comparisons are a fundamental and ubiquitous approach to interpreting

experimental psychological data. Yet, we argue that the sample and effect sizes in pub-

lished psychological research are frequently so small that sample means are insufficiently

accurate to determine whether treatment effects have occurred. Generally, an estimator

should be more accurate than any benchmark that systematically ignores information about

the relations among experimental conditions. We consider two such benchmark estimators:

one that randomizes the relations among conditions and another that always assumes no

treatment effects. We show conditions under which these benchmark estimators estimate

the true parameters more accurately than sample means. This perverse situation can occur

even when effects are statistically significant at traditional levels. Our argument motivates

the need for regularized estimates, such as those used in lasso, ridge, and hierarchical

Bayes techniques.

Introduction

We investigate the problem of estimation accuracy for fundamental research designs in psy-

chology and related areas. Specifically, researchers often measure some dependent variable

from subjects who are assigned to different experimental conditions. Typically, researchers

take the mean of the dependent variable in each condition, and try to determine whether any

differences in the means are due to treatment or noise.

We approach this old problem in a new way by comparing the accuracy of sample means—

that is, how closely they track the population means—to two benchmark estimators. These

benchmarks systematically ignore important features of the data, namely which means are

larger than others and by how much. As such, these benchmarks are absurd, at least for the

purpose of estimating treatment effects. We argue simply that a researcher should be alarmed

if these absurd benchmarks were actually closer, on average, to the “truth,” i.e., the set of corre-

sponding population means, than the corresponding sample means. Yet, as we demonstrate,

research in many areas of psychology typically employs sample and effect size combinations

such that these absurd benchmarks are indeed closer to the truth than sample means. Notably,
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achieving statistical significance does not preclude being in this situation. Our arguments

achieve three goals:

• we provide new and more principled arguments for determining sufficient sample sizes in

behavioral science experiments,

• we call for the widespread adoption of modern estimation methods for estimating popula-

tion means, e.g., Bayesian methodologies.

• we provide a more nuanced perspective on the replication crisis in the behavioral sciences

[1, 2], one based on the limits of estimation rather than binary decisions based on null

hypothesis testing.

Our two benchmark estimators are not intended to actually be used by behavioral scientists

to estimate relationships among population means. Rather, they are a tool for setting up a min-

imum standard of estimation accuracy that a reasonable experimenter would want to surpass.

One of our benchmark estimators randomizes the relations among experimental conditions,

both in terms of which means might be larger than others and also the relative size of the dif-

ferences between them. The other benchmark simply assumes that there are no condition

effects, no matter the data. Whether these absurd benchmarks are more precise than sample

means depends on the true size of the treatment effect and the sample size.

We demonstrate that these absurd estimators outperform sample means when the true

effects and sample sizes are modest in size. We provide exact expressions of how small these

values have to be, and find that commonly used sample sizes in many areas of psychology are

insufficient to insure that sample means outperform these absurd estimators. Based on the

assumption that researchers want their sample means to be more accurate than absurd

approaches to science that obscure or scramble treatment effects, we provide new standards

for minimum sample sizes researchers should obtain before interpreting their results. Gener-

ally, this approach would call for larger sample sizes. Researchers can avoid these problems

altogether by replacing the use of sample means with modern estimators, including Bayesian

methods, lasso and ridge techniques. Insofar as our benchmarks are compelling, our guidelines

do not reflect hypotheses, models, or arbitrary decision criteria.

Our paper is not the first to raise the question of poor estimation accuracy within the field

of psychology. Many authors have found that studies may typically yield inaccurate parameter

estimates that are highly variable across replicates, leading to contradictory findings within

the literature [3] as well as core findings that do not replicate [1, 4]. We further this discussion

by taking steps toward precisely defining minimally acceptable estimation accuracy. One

could conclude that a treatment effect exists under some decision criterion, for example null

hypothesis testing, using estimates that are unacceptably accurate. Our paper extends current

approaches to quantifying unacceptable estimation accuracy within the social sciences [2] by

comparing a status quo method to a concrete set of benchmarks.

The use of accuracy benchmarks

It is a common scientific practice to adopt accuracy benchmarks. For example, experimental

chemists and physicists specify precisely how accurate equipment must be to conduct mean-

ingful experiments. Computer scientists use performance benchmarks when training classi-

fiers to categorize objects, some as simple as a random classifier that guesses to which

category an object belongs. A natural way to think about adequate estimation accuracy is

to consider minimum benchmark values that should be exceeded. Though it may be unfa-

miliar to describe them in these terms, sample means are a piece of equipment as well, and it
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is natural to ask whether they are tuned accurately enough for answering one’s scientific

question.

At first blush, it may seem that mainstream psychological research has already addressed the

problem of standards for estimation accuracy. Null hypothesis statistical testing, despite its myr-

iad criticisms [5–7], provides an objective rule for concluding whether a result was an accident

of sampling error. Confidence intervals, recommended by the APA when reporting significance

values [8], characterize the amount of uncertainty in estimates. These techniques have meaning-

ful interpretations, but we seek a benchmark that is free of hypotheses, model assumptions and/

or conventional (but arbitrary) settings. For example, p-value thresholds of.05 or.01 to reject

null hypotheses, while precise, are arbitrary and not derived from any normative argument

about what the likelihood of data under the null hypothesis should be given the question of inter-

est. Rosnow and Rosenthal [9] famously emphasized the lack of an ontological basis for fixed

alpha testing by noting “. . .surely, God loves the.06 nearly as much as the.05.” Similarly, what

one person may find to be a narrow enough confidence interval may be unacceptably wide to

someone else. Our goal is to derive precise and non-arbitrary standards for estimation accuracy.

One type of meaningful performance benchmark for establishing whether we have learned

something is an uninformed benchmark like random guessing. For example, if one has truly

learned something about a subject matter, one should score better, on average, than random

guessing on a valid multiple choice exam. As another example, consider evaluating the perfor-

mance of a mutual fund manager. If the fund returned 8% on its investments last year, we may

wonder whether 8% was merely lucky or significantly different from zero. It is perhaps more

informative to ask whether the fund outperformed an unweighted index of the entire market,

because the index represents the expected performance of random stock picking. If a mutual

fund performs no better than a stockpicker who throws darts at the names of listings, then we

cannot yet conclude that the fund’s manager has any skill in picking stocks.

In the context of running experiments and determining whether the treatments had an

effect, an uninformed benchmark against which to compare sample means would be one that

ignores information about treatment effects. Such a benchmark could consider absolute levels

when estimating population means, like the observed grand mean across conditions, but

would not attend to information about how the conditions compared with each other. Using

this approach to set standards of estimation accuracy has advantages over paradigms like null

hypothesis testing. Importantly, this approach assume nothing about the generating distribu-

tion of the data. Thus, all conclusions are distribution-free and conclusions about estimation

accuracy are not conflated with the goodness-of-fit of one’s statistical model.

Motivating example

Assume that we have p-many population means, μi, i 2 {1, 2. . ., p}, and that that m̂i is an esti-

mate of the corresponding population mean μi. Let μ̂ ¼ m̂i; i 2 f1; 2 . . . ; pg: Throughout, we

use mean squared error (MSE) as a metric of estimation accuracy. The MSE of an estimator μ̂
is defined as

MSEμ̂ ≔ E½
Xp

i¼1

ðm̂i � miÞ
2
�;

where E[�] is the usual expectation operator of a random variable. MSE has some nice proper-

ties. It is well known that, for any estimator,

E½
Xp

i¼1

ðm̂ i � miÞ
2
� ¼

Xp

i¼1

Varðm̂iÞ þ
Xp

i¼1

ðE½m̂i� � miÞ
2
;
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where Varðm̂ iÞ denotes the variance of m̂i. Said simply, the MSE of any estimator can be

described as a sum of the estimator’s total variance and its squared bias,
Pp

i¼1
ðE½m̂i� � miÞ

2
.

The key insight to be gained from this decomposition is that it is possible for a biased estimator

to be more accurate (smaller MSE) than an unbiased one if the biased estimator has less

variance.

To illustrate this idea and locate our arguments within a concrete example, we consider

Correll, Park, Judd, and Wittenbrink’s [10] race-based weapons priming task. In this task, par-

ticipants were shown pictures of actors holding guns or similarly-shaped objects such as cell

phones. The task was to decide whether the held object was a gun. Correll et al. found that par-

ticipants respond more often and more quickly that the object is a gun when it is held by an

African American actor than a White actor. For the sake of this example, let’s assume the effect

is both real and small, such that participants respond 40 ms faster, on average, when the gun is

held by African American actors. Let each observation in the African American actor condi-

tion be normally distributed with μA = 680 ms and σ = 300 ms; likewise, let each observation

in the White actor condition be normally distributed with μW = 720 ms and σ = 300 ms. The

response-time distributions for the African American actor condition (solid line) and White

actor condition (dashed line) are displayed in Fig 1A. The difference of 40 ms is quite small

compared to the variability. Fortunately, researchers collect multiple observations from each

condition. Let’s take for example the case where the researcher collects eight observations for

each actor condition, for a total of sixteen observations. We calculate the sample mean for each

condition, comprised of eight observations each, and the distribution of these sample means is

plotted in Fig 1A as well. The reduction in variance is obvious.

We are interested in the difference between the race condition sample means, and this dif-

ference serves as an estimate of the true effect. Fig 1B shows the distribution of this measure-

ment, and it is centered at 40 ms, the true effect (black vertical line), but the resolution is quite

poor, i.e., the width of this distribution is large. We can ask whether the difference between the

sample means has sufficient “resolution” to estimate the true effect in this environment.

Fig 1. Estimators and error. A. Distributions of observations and sample means across 8 observations for the African American actor condition (solid line) and

White actor condition (dashed-line). B. Distribution of the measurement tool, the difference in sample means. The vertical line is the zero estimator. C.

Distribution of the absolute error for the sample mean measurement tool. The root-mean-squared error is 7 times greater for the sample mean tool than the zero

estimator.

https://doi.org/10.1371/journal.pone.0207239.g001

Estimation accuracy in the psychological sciences

PLOS ONE | https://doi.org/10.1371/journal.pone.0207239 November 26, 2018 4 / 17

https://doi.org/10.1371/journal.pone.0207239.g001
https://doi.org/10.1371/journal.pone.0207239


One way of assessing the accuracy of the sample mean difference is to compare it to an

alternative method. The method we choose is crude and not useful in general. It returns the

grand mean across all 16 observations as the measurement for each race condition, and the

measurement of the true effect is identically zero. This estimator is certainly strange. A

researcher using this estimator will always conclude that the effect is identically zero regardless

of the data, and for this reason, we call this estimator the zero estimator. The zero estimator is

shown as the red vertical line in Fig 1B. Note that it is slightly off from the true value of 40 ms.

The zero-estimator is akin to a broken clock. It is correct only when the true effect is identi-

cally zero. But in the hypothetical race-priming experiment, the true effect is 40 ms, meaning

that the zero estimator will fare poorly compared to consistent estimators that are calculated

with large sample sizes. Sample means are known to have many favorable properties. No other

unbiased estimator yields lower MSE. Moreover, sample means track the true values well and

converge on them rapidly with large sample sizes.

But these statistical facts do not mean that the set of sample means outperform the zero esti-

mator in the above environment. Fig 1C shows the distribution of root mean squared error for

the difference between the sample means. Small values are desirable as they indicate less error.

Note how the error is quite large across most of the distribution. With just eight observations

per condition, root MSE error is about 150 ms. Let’s compare this degree of error to that for

the zero estimator. The zero estimator has an error of 40 ms—if the true value is 40 ms and the

estimate is zero regardless of data, then the error is always the same. This value is indicated

with the red vertical line. This error is quite small. The zero estimator, while biased, is benefit-

ing from having low variance in this environment. This phenomenon is clearly a function of

effect size and sample size. As either, or both, increase, so too will the accuracy of the sample

mean difference. For example, we could consider a much smaller value of σ for the two condi-

tions, σ = 50 ms. The effect size is now much larger and we would expect the sample mean dif-

ference to be more accurate. Indeed, for this value of σ, we obtain a root MSE of 25 ms for the

sample mean difference, with the zero estimator’s root MSE unchanged at 40 ms. Likewise, as

effect size decreases, i.e., σ increases, we would see the opposite. For σ = 500 ms, the sample

mean difference has root mean squared error equal to 250 ms, which is far less accurate than

the zero estimator, again, unchanged at 40 ms for this example.

In this motivating example, the difference between sample means is far less accurate a mea-

surement than the zero estimator even though the true value is nonzero. Considering these

sample means, forming conclusions from them, or even reporting them overstates their mea-

surement fidelity. They are highly inaccurate in this environment, which reflects the poor reso-

lution from using small samples to measure small effects.

Sometimes people find it attractive to think of accuracy in terms of statistical power. Esti-

mation accuracy is distinct from power. We need not discuss binary decisions, long term error

rates, beliefs, or any other inferential system. In fact, it is a question of whether the measure-

ment itself has the resolution to be useful, much as measurements from yardsticks are highly

inaccurate for measuring the width of a hair. The reason is the same, there needs to be a match

between the environment (sample and effect sizes) and the instrument (estimator).

In this example, the environment is defined by the true effect, the true variability in the

data, and the sample size. In practice, two of the three elements are unknown, at least to arbi-

trary precision. In fact, the goal is to measure these true values, and knowing them would

obviate the goal. Fortunately, we do not need to define these true values to assess accuracy.

Instead, one could specify a range or the order-of-magnitude of possible effect sizes. We ask

that if effects ranged on a specified scale—say 10s or 100s or milliseconds—then, what are

the sample sizes needed to ensure that sample means are more accurate than the zero

estimator.
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In a later section we introduce a new, crude estimator that is in some cases better than the

zero estimator but still not appropriate for general use. This estimator measures some impor-

tant features of the data, such as the scale of possible effects, but randomizes the relations

between groups or conditions. We consider sample means minimally accurate in environ-

ments where they are expected to be more accurate than this new random estimator.

Before we introduce this new random estimator, it is helpful to review some advances in

modern statistical theory. These advances, which broadly go under the name of regularization

in estimation, serve two purposes here. First, they help us develop our random estimator

benchmark. Second, they become the basis for our tangible recommendations in tandem with

the zero estimator. We recommend that modern estimators based on regularization (e.g., hier-

archical Bayes, lasso, ridge, methods) be adopted broadly within the field of psychology, espe-

cially in impoverished environments (small effects and/or small sample sizes).

Stein’s paradox and shrinkage estimation

Although it is common to think of the sample mean as a natural or obvious choice for estima-

tion, the seminal work of Stein (1956) showed that the vector of sample means is not an admis-

sible estimator. In other words, there exist biased estimators that always incur less MSE than

the vector of sample means (for the case p> 2). The result was controversial at first, but

accepted today and foundational in analysis under the moniker of regularization (e.g., lasso

regression, ridge regression, Bayesian shrinkage, see [11]). Here, we review Stein’s result and

its consequences for understanding the measurement properties of the sample mean.

Consider a researcher who wishes to know whether reading speed of words is affected by

the color in which the words are displayed. The researcher chooses colors of red, green, yellow,

and blue, and presents words, one-at-a-time, to participants. Participants are tested between-

subject and see words in only one of the font colors. Note that each sample mean is an inde-

pendent measure. The sample mean for red words is not informed by the responses to blue

words. A seemingly natural statistical approach, then, is to calculate the sample mean for each

color and the differences among them. Stein’s paradox reveals that this approach is not ideal. If

one knew from the other three colors that response times tend to be on the scale of half a sec-

ond or so, then this information should be used in measuring the response to red words. That

is, it should be used to calibrate the estimates themselves.

Fig 2 shows an example. The top row shows true condition response time means as a func-

tion of color. Red words are read more quickly than green words and so on. The data are

shown next, and they are noisy draws from the respective true values. Below them are sample

means, which are less perturbed from the true means than the data themselves. The bottom

row shows Bayesian hierarchical-model estimates [12] which are different than the sample

means. This Bayesian hierarchical model is specified as follows:

yki � Normalðm� þ ak; s2Þ;

ak � Normalð0;
1

8
Þ;

pðm; s2Þ / 1=s2;

where yk,i is the random variable corresponding to observable responses from the kth sample

in the ith group, μ� is the grand mean, and pðm; s2Þ / 1

s2 jointly describes a non-informative

prior for μ� with equal weight on all values and a non-informative prior for variance with a

flat prior on log σ2 [13]. This hierarchical model uses the combined scale of observations to

“shrink” estimates toward the grand mean of all observations. That is, the hierarchical esti-

mates will be less disperse than the sample means. This process will, in general, lower the total
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MSE across the four conditions by “borrowing strength” via pooling. This does not mean that

individual mean estimates are necessarily more accurate, e.g., response time estimates for red

words are not necessarily improved by using information about green word response times.

When pooling in this manner, some individual estimates will be made more accurate with oth-

ers becoming less so. On balance, the total error will be reduced.

This shrinkage property has motivated much of the work in modern estimation. Whereas

pooling information always improves accuracy, the amount to pool is necessarily a function of

prior assumptions. Different methods, say empirical Bayes, hierarchical Bayes, lasso, and ridge

regression, vary in these prior assumptions. Even so, all are based on the above insight.

Fig 2. The benefits of shrinkage. True values, data, sample means, and a Bayesian hierarchical shrinkage estimates are shown. The shrinkage

estimates are more accurate in this case as well as on average across repeated samples from the true values.

https://doi.org/10.1371/journal.pone.0207239.g002
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A surprising consequence of this work, known as Stein’s paradox, is that any information

about the scale, no matter how small, helps improve accuracy. This argument for scaling

measurements may be taken to an extreme, and doing so helps build intuition. Consider the

following famous example where the goal is to measure the true mean of three populations:

the weight of all hogs in Montana, the per-capita tea consumption in Taiwan, and the height

of all redwood trees in California. These values could be estimated separately by getting a

sample of hogs, a sample of Taiwanese households, and a sample of redwood trees and using

each sample mean as an estimate of the corresponding population mean. Stein’s paradox

shows that the total error of these three estimates is expected to be reduced if, rather than

using sample means to estimate each individual population mean, scale information from

all three samples is pooled. To be clear, pooling only helps in lowering total MSE—hog

weight information does not necessarily reduce the error of the redwood tree heights

estimate.

Random estimators

We are now in a position to use shrinkage estimation to assess the accuracy of sample means.

To do so, we ask if we can construct an absurd estimator, similar in spirit to the zero estimator,

that outperforms sample means in common environments. If so, we consider sample means

unacceptably accurate in those environments.

Here, we use randomness rather than zero. We will randomly assign measurement values

to each condition so that which group means are larger and smaller, and by how much, is ini-

tially completely random. This notion of using a random benchmark to calibrate the perfor-

mance of a method is standard in classification and machine learning, and is even precedented

in psychology [14–16]. The innovation here is to use random estimators that have modern

shrinkage properties. Although the relations between condition means are scrambled, the data

are used to optimally determine the scale (i.e., calibration) of the values. The random estimator

presented in the next section, though related to the class considered in [15], is both novel and

ideal for assessing the accuracy of sample means.

Here is an example of how smart random estimators work: The shrinkage estimates in Fig 2

for the colors red, green, blue, and yellow are the values of 617 ms, 636 ms, 638 ms, and 712

ms. One way we can construct a random estimator with these calibrations is to randomly

assign each value to a color. For example, we may assign the colors red, green, blue and yellow

the values 638 ms, 636 ms, 712 ms, 617 ms. The key property of this new random estimator is

that it does exactly the opposite of what psychologists value. It scrambles the exact information

of interest, the relations among the conditions. For example, one is unable with this tool to

truly assess whether red text is read more quickly than green text. It preserves the characteristic

of no intrinsic interest, the scale of measurement, say that differences are about 30 ms. Such

information, while useful in fine tuning estimates, is of no real relevance in practice to most

psychologists.

We consider the sample means to be minimally accurate if they are more accurate than ran-

dom estimators that scramble the relations among conditions. To characterize this, we develop

a smart random estimator in the next section. This estimator leverages modern advances in

shrinkage and uses the scale afforded in the data to calibrate the random relations. The argu-

ment is that if this smart random estimator, which randomizes critical information, can out-

perform sample means, then sample means are unacceptably accurate under those sample and

effect sizes. The critical question is whether there are such environments. The answer is yes,

and the environments are, unfortunately, not so rare in psychological science.

Estimation accuracy in the psychological sciences

PLOS ONE | https://doi.org/10.1371/journal.pone.0207239 November 26, 2018 8 / 17

https://doi.org/10.1371/journal.pone.0207239


A random estimator for condition means

The key component in a random estimator is that the relations among the condition means is

random, and so, we start with random numbers. A bit of notation is helpful, and we let p
denote the number of conditions. Let a1, a2, . . ., ap be a sequence of independent draws from a

continuous uniform distribution over the interval [−1, 1]. The choice of [−1, 1] as support for

the uniform distribution was arbitrary. Due to the scaling parameter, b, any continuous uni-

form distribution whose support is bounded, convex and symmetric about 0 will yield exactly

the same random estimator. We assign a1 to the first condition, a2 to the second condition,

and so on. Because each of ai’s are random, the relations among the conditions are random

and, in particular, are completely independent of any structure in the data.

Next, we use data to scale the ai’s. As described in the previous section, this scaling term

will leverage shrinkage properties to put these random estimates on a scale appropriate to the

data. We denote this scaling coefficient as b, and it is a single number. The random estimator

for the ith condition mean, denoted m̂re
i , is

m̂re
i ¼ G þ b� ai; ð1Þ

where G is the observed grand mean across conditions. Here, we see the random estimator is a

simple scaling of random numbers. The value of b, discussed subsequently, can be positive or

negative, depending on the data. In either case, the order among condition estimates is ran-

dom, that is, it reflects the random relations among the random numbers a1, . . ., ap.
Remaining is the construction of b. We use a least-squares argument with optimized

shrinkage compared to sample means—see S1 File for a full derivation. The scalar b is con-

structed to insure that m̂re minimizes squared error subject to the above random assignment

constraints. The resultant is

b ¼
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp � 1Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1

a2
i

q
Xp

i¼1

aiai

0

B
@

1

C
A;

where ai ¼ yi � G, with yi defined to be the sample mean for the ith condition. Although the

scaling term b makes full use of the data, which is ‘smart’ from an estimation perspective,

this scaling parameter is quite limited. It can either: (1) leave the random ordering of the ai’s
unchanged (if b> 0) or (2) it can completely reverse the random ordering (if b< 0). Hence,

the order of estimates is randomized, although not uniformly as the b term can reverse the ran-

dom ordering according to the data. Because of this, the p = 2 case does not randomize order

at all compared to sample means. For this case, the zero estimator comparison may be more

appropriate, although, as we later discuss, the zero and random estimators yield similar sample

size recommendations. As p increases, the correlation between the order of the estimates gen-

erated by the random estimator and the order generated by sample means quickly goes to

zero.

Whether the random estimator incurs less MSE than sample means depends upon the envi-

ronment, i.e., sample size and effect size. As a simple example of how to calculate our random

estimator, consider the hypothetical data in the previous example on naming words as a func-

tion of display color. The sample means for this set of data are equal to: y1 ¼ 593 ms, y2 ¼ 626

ms, y3 ¼ 630 ms, and y4 ¼ 756 ms, for Conditions 1-4 respectively. We refer to this pattern of

means as the observed pattern of treatment effects. Now, let’s consider what the random esti-

mator would yield as estimates of the population means for these data. First, we draw four uni-

form random numbers from the [−1, 1] interval that correspond to the four conditions. For
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Condition 1, we obtain -.190, for Condition 2, we obtain -.973, for Condition 3, we obtain.823,

and for Condition 4 we obtain.600. Note that once a random number has been drawn for a

condition, we cannot shuffle or re-assign it to another condition after the fact. We calculate

the scale factor of b as 21.5, which portends quite a bit of shrinkage. Using this value, the ran-

dom estimates are: mre
1
¼ 647 ms, mre

2
¼ 630 ms, mre

3
¼ 669 ms, mre

4
¼ 664 ms. Note that all four

estimates are close to the grand mean. Recall that the order of the sample means was: Condi-

tion 1< Condition 2< Condition 3< Condition 4. In contrast, the random estimator now

assigns the order: Condition 2< Condition 1< Condition 4< Condition 3. This is the same

random order that was produced by the random ai draws. Note also that the relative distance

between the random estimates has also been randomized; the estimates for Conditions 3 and 4

are quite close, in contrast to the sample means, where y4 is relatively farther from y3.

This illustration was based on a single sample. Of course, the stronger argument is what

may be expected across all samples for an environment. Perhaps the most straightforward

approach to generalization is to simply simulate many samples from the same environment.

As a simulation example, we will define a particular environment and compare the accuracy of

sample means to the random estimator directly. As before, consider four treatment conditions

under a balanced design. Let the four population means be equal to: μ1 = 600 ms, μ2 = 620 ms,

μ3 = 640 ms, and μ4 = 660 ms. For this simulation we will assume that the dependent variable

being measured is normally distribution with a standard deviation of 100 ms. This combina-

tion of means and variance gives an overall effect size of f 2 = .05, which is a “small” effect

according to the Cohen conventions [17]. A single repetition will consist of the following

steps: (1) generate ten samples (n = 10) from each of the four distributions, (2) calculate the

four sample means and our random estimates, and (3) calculate the squared error from each

set of estimates and the four population means. By repeating steps (1)-(3) many times and

averaging the squared error for each estimation method we can obtain an estimate of MSE. To

arrive at a good estimate, we carried out 10,000 repetitions. The R code used to generate all of

the figures is publicly available at https://figshare.com/s/0c2bbcab9e5ce4e8e7fa.

Fig 3 shows the mean-squared error in estimation for each repetition, and the big green dot

shows the mean over all repetitions. The mean error is 30% larger for the sample mean than

for the random estimator, and, moreover, 62% of the samples show larger error for the sample

mean than for the random estimator. Given these results, it is hard to take the sample means

seriously when they are more error prone than the random estimator. In this sense, sample

means are insufficiently accurate.

Planning and evaluating designs

The main advantage of zero- and random-estimators is that they provide a benchmark for

using sample means to evaluate the ordering of conditions. If these nonsense estimators with

no or randomized orders are expected to do a better job of accounting for the structure in data

than sample means, then we argue that sample means are not sufficiently accurate. For simple

designs, say one-way, between-group ANOVA designs, it is possible to derive expressions for

the minimum sample size per condition for which sample means are indeed more accurate

than the zero- or random-estimator.

The key input to these expressions for minimum sample size is a minimum Cohen noncen-

trality effect-size measure one wishes to resolve, f 2. This measure, along with sample size and

number of conditions, defines the environment. The noncentrality measure is

f 2 ¼

1

p

Xp

i¼1
ðmi � m

�Þ
2

s2
;
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where μ� is the true grand mean given by m� ¼ ð
Pp

i miÞ=p and p is the number of conditions.

For calibration purposes, Cohen recommends using f 2 values of .01, .0625, and .16 as emblem-

atic of small, medium, and large effects, respectively. These values for f 2 are analogs to the val-

ues of .2, .5, and .8, respectively, for the better known d measure. The f 2 measure is also related

to R2, the proportion of variance accounted for by the condition structure as

f 2 ¼
R2

1 � R2
:

Expressing a minimum sample size for sample mean accuracy works as follows: First the

researcher chooses a value of f 2 to be resolved in an experiment. Then, the minimum sample

size per condition needed to insure that on average sample means are more accurate than the

random estimator can be obtained via the following result.

PROPOSITION 1. Let MSEre denote the MSE of the random estimator, m̂re
i ; i 2 f1; 2; . . . ; pg. Let

MSEsm denote the MSE of the vector of sample means, yi; i 2 f1; 2; . . . ; pg;. The ratio MSEre
MSEsm

is less

Fig 3. Mean-square error for the sample mean and the random estimator for 10 observations in each of four

conditions. Each point shows the result from a simulation repetition, and there are 10,000 such repetitions. Contours

are bivariate kernel density estimates. The large point is the mean of MSEs across repetitions. This mean for sample

means is 40% larger than the mean for the random estimator, and 63% of samples show larger MSE for the sample

mean.

https://doi.org/10.1371/journal.pone.0207239.g003
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than 1, if, and only if,

n <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp � 1Þ

p

pf 2
; ð2Þ

where n is the sample size per condition in the experimental design.

A proof is provided in S1 File. As an example, if there are 5 conditions and the minimum f 2

to be resolved is.05, then the value of n needed, at a minimum, for sample means to be more

accurate than the random estimator is 17.9, which rounds up to 18. Similarly, the minimum

sample size so that the sample mean is more accurate than the zero estimator is as follows.

Recall that the zero estimator simply uses the grand mean, G, as the estimate for each popula-

tion mean.

PROPOSITION 2. Let MSEz denote the MSE of the zero estimator, G. Let MSEsm denote the MSE
of the vector of sample means, yi; i 2 f1; 2; . . . ; pg;. The ratio MSEz

MSEsm
is less than 1, if, and only if,

n <
ðp � 1Þ

pf 2
: ð3Þ

The proof is trivial. It is easy to see that the right-hand side of inequality (2) is larger than the

right-hand side of inequality (3) by a factor of
ffiffiffiffiffiffi
p� 1

p

q
. For this reason, we focus on the sample

size requirements for the random estimator. Let nr be the minimum sample size per condition

such that MSEre is greater than MSEsm. Fig 4A shows the dependency of nr on f 2 for experi-

ments with 2, 4, 6, and 8 conditions. The minimum sample sizes per condition for minimal

accuracy can be quite large, say around 80 observations per condition to resolve small effects.

In designs with smaller sample sizes, random estimators will outperform sample means on

average.

Recall that MSE for any estimator can be decomposed into the sum of squared bias and

total variance. For the random estimator, it is straightforward to see how it outperforms sam-

ple means under the conditions we specify. The squared bias of the random estimator is equal

to

Xp

i¼1

ðE½m̂re
i � � miÞ

2
¼ ðp � 1Þf 2s2;

¼
p � 1

p

Xp

i¼1

ðmi � m
�Þ

2
:

As the squared distance between the population means becomes smaller, all else equal, so

does the squared bias of the random estimator. The random estimator incurs this bias penalty

but outperforms sample means, under the conditions we specify, by having less total variance.

The total variance of the random estimator is equal to

Xp

i¼1

Varðm̂re
i Þ ¼

s2ðpþ ðp � 1Þðp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p

p
Þ

2
Þ

pn
þ ðp � 1Þð2p � 1 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p

p
Þf 2s2:

While not immediately obvious, this term is much smaller than the total variance of sample

means, which is equal to
ps2

n , for modest effect sizes, f 2. In this way, the random estimator trades

an increase in squared bias for a reduction in total variance—which, under the conditions we

specified, allow it to incur less MSE than sample means.
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Fig 4. A. Minimum sample size (per condition) for minimal acceptable accuracy of the sample mean as a function of effect size f 2 and the number of conditions.

One of the more noteworthy aspects is that the needed sample size per condition increases with the number of conditions. B. Minimum sample size (per condition)

for a power of 50% at the 5% level. The needed sample size per condition decreases with the number of conditions. C. The power at the 5% level for the minimum

sample size for minimal sample mean accuracy. Surprisingly, commonly powered designs often yield unacceptably accurate sample means.

https://doi.org/10.1371/journal.pone.0207239.g004
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For comparison, Fig 4B shows the minimum sample size per condition to maintain 50%

power (at the 5% Type I level) in a one-way ANOVA F-test. As can be seen, these minimum

sizes are larger than that needed for minimal accuracy, indicating that minimal accuracy is a

low bar. Also evident is that the number of conditions affects minimum sample size differently

for minimal accuracy than for power. The minimum sample size increases with condition size

for minimal accuracy but decreases for power (indeed, increasing the number of conditions

leads to a more stable estimate of within-condition variance). As a result, with several condi-

tions, it may be possible to have high powered designs that have insufficiently accurate sample

means. In such cases, it is hard to see how the ensuing inferences are sound even with high

power. Overall, increasing the number of conditions (while maintaining sample size per condi-

tion) makes it easier to detect differences, but it makes it harder measure the ordering relation-

ships accurately.

The above minimum sample size expressions are general in that they hold no matter how

the dependent variable is distributed. The sole assumption is the familiar one of homogeneity

where variance is assumed constant across conditions. In the online supplement we provide

simulation code that examines our sample size recommendations when the homogeneity of

variance assumption is violated for p = 3, 5. We find our primary result, Proposition 1, to be

very robust to homogeneity of variance violations.

How often are sample means insufficiently accurate?

One might ask: how often do psychologists utilize sample means that are insufficiently accu-

rate? One way to answer this question is to examine statistical power values for sample sizes

that are at the threshold for minimal sample mean accuracy. Fig 4C shows the statistical power

(at the 5% Type-I level) for a one-way ANOVA for nr, the minimum sample size per condition

for sample means to outperform our random estimator. It is clear from this graph that sample

means are unacceptably accurate for non-trivial power values, especially when there are many

conditions.

How well powered are studies in the literature? Although this is a difficult question, there

are several model-based meta-analyses that estimate power across different areas of psychol-

ogy. Average statistical power in many areas of psychology is at or below.5, with average

power from studies with small effects hovering around.17 [3, 18–20]. A recent study by

Szucs and Ioannidis [21] examined more than 100,000 statistical records from about 10,000

cognitive neuroscience and psychology papers published within the past five years. They

found that the median power to detect small effect sizes was .12—which clearly equates to an

inaccurate sample mean environment—see Fig 4C. We argue that sample means should not

be used in such environments. Instead, it is imperative for researchers to use more sophisti-

cated methods that incorporate modern inference and regularization when investigating

such effects.

General discussion

Sample means are measurement instruments, and like physical measurements, are appropriate

in specific environments. In low-resolution environments, sample means are outperformed by

smart random estimators that scramble the relations among conditions. In such situations, it

seems that using sample means to characterize treatment effects is inappropriate, since esti-

mates that obscure treatment effects more accurately characterize the data. Unfortunately,

low-resolution describes the typical combination of sample and effect sizes in many areas of

psychological research.
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Why mean-squared error as metric of accuracy?

Throughout this article, we have used MSE (or root MSE) as our measure of estimation accu-

racy. This choice is for four important reasons: First, the usage of MSE as an accuracy metric

is ubiquitous within the field of statistics and is treated often as a gold standard. Indeed, it is

well-known that sample means are the best linear unbiased estimator by exactly this crite-

rion. Second, nearly all of the major statistical tests used in psychology are based on a

squared error metric, e.g., ANOVA. Third, using MSE makes our results distribution-free.

This is not a minor point. Our main results (Propositions 1 and 2) hold whether the depen-

dent variable is normally distributed or not. Fourth, MSE allows for an interpretable decom-

position of accuracy. Since sample means are unbiased, MSE is simply the variance of the

sample mean estimates. Said in plain language, sample means are so variable, under the con-

ditions we identify, that biased, nonsensical estimators outperform them by the simple virtue

of being less variable.

Sample means are not ideal

Modern estimation theory stresses shrinkage estimators over sample means, and examples

include Bayesian hierarchical estimators, lasso estimators, and ridge estimators. These estima-

tors make use of condition relational information, like the sample mean, and scale informa-

tion, like the random estimator. Because they use information wisely, these modern estimators

outperform sample means and random estimators in all measurement environments. They are

better measurement tools. These regularized measures are increasingly common in sophisti-

cated data analysis [22] precisely because they are more accurate in these environments.

One of our main conclusions is that researchers should avoid reporting sample means in

favor of more sophisticated estimates. Two issues remain: First, and perhaps of lesser impor-

tance, is that modern estimation requires some calibration for shrinkage. Almost all regulariza-

tion techniques have a smoothing, variability, or banding parameter. This parameter can be set

based on the analysts judgment or from default procedures. One example of such a default

procedure is the usage of empirical Bayes where empirical estimates across units calibrate the

shrinkage. Another example is the use of unit-information priors such as that underlying the

Bayesian interpretation of BIC [23] This is a highly active area of research and new Bayesian

estimators can employ a wide range of regularization techniques [24] The second issue is more

consequential. Researchers are comfortable with sample means. And why shouldn’t they be?

We have all been taught the arithmetic average since grade school. The sample mean is the

most privileged measure of central tendency, and it takes center stage over its less glorious sib-

lings, median and mode. Yet, the performance of the random estimators in certain environ-

ments, and the superiority of modern estimators more generally, serve to undermine this

privileged and natural status. In our view, sample means, sample medians, and modes should

not be taught as descriptives. Instead, they should be taught within the context of estimation

where statistics serve not to describe but to estimate unknown parameters. Different estima-

tors have different desiderata pertaining to bias, efficiency and loss. Although this approach is

more complicated and difficult than putting the sample mean on a pedestal, it seems necessary

for clear scientific thought.
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